咸宁膜厚仪产品使用误区
采用峰峰值法处理光谱数据时,被测光程差的分辨率取决于光谱仪或CCD的分辨率。我们只需获得相邻的两干涉峰值处的波长信息即可得出光程差,不必关心此波长处的光强大小,从而降低数据处理的难度。也可以利用多组相邻的干涉光谱极值对应的波长来分别求出光程差,然后再求平均值作为测量光程差,这样可以提高该方法的测量精度。但是,峰峰值法存在着一些缺点:当使用宽带光源作为输入光源时,接收光谱中不可避免地叠加有与光源同分布的背景光,从而引起峰值处波长的改变,引入测量误差。同时,当两干涉信号之间的光程差很小,导致其干涉光谱只有一个干涉峰的时候,此法便不再适用。白光干涉膜厚测量技术可以在不同环境下进行测量。咸宁膜厚仪产品使用误区
为了分析白光反射光谱的测量范围,开展了不同壁厚的靶丸壳层白光反射光谱测量实验。图是不同壳层厚度靶丸的白光反射光谱测量曲线,如图所示,对于壳层厚度30μm的靶丸,其白光反射光谱各谱峰非常密集、干涉级次数值大;此外,由于靶丸壳层的吸收,壁厚较大的靶丸信号强度相对较弱。随着靶丸壳层厚度的进一步增加,其白光反射光谱各谱峰将更加密集,难以实现对各干涉谱峰波长的测量。为实现较大厚度靶丸壳层厚度的白光反射光谱测量,需采用红外的宽谱光源和光谱探测器。对于壳层厚度为μm的靶丸,测量的波峰相对较少,容易实现靶丸壳层白光反射光谱谱峰波长的准确测量;随着靶丸壳层厚度的进一步减小,两干涉信号之间的光程差差异非常小,以至于他们的光谱信号中只有一个干涉波峰,基于峰值探测的白光反射光谱方法难以实现其厚度的测量;为实现较小厚度靶丸壳层厚度的白光反射光谱测量,可采用紫外的宽谱光源和光谱探测器提升其探测厚度下限。 景德镇膜厚仪按需定制白光干涉膜厚测量技术可以通过对干涉曲线的分析实现对薄膜的光学参数和厚度分布的联合测量和分析。
本章主要介绍了基于白光反射光谱和白光垂直扫描干涉联用的靶丸壳层折射率测量方法。该方法利用白光反射光谱测量靶丸壳层光学厚度,利用白光垂直扫描干涉技术测量光线通过靶丸壳层后的光程增量,二者联立即可求得靶丸折射率和厚度数据。在实验数据处理方面,为解决白光干涉光谱中波峰位置难以精确确定和单极值点判读可能存在干涉级次误差的问题,提出MATLAB曲线拟合测定极值点波长以及利用干涉级次连续性进行干涉级次判定的数据处理方法。应用碳氢(CH)薄膜对测量结果的可靠性进行了实验验证。
微纳制造技术的发展推动着检测技术向微纳领域进军,微结构和薄膜结构作为微纳器件中的重要组成部分,在半导体、医学、航天航空、现代制造等领域得到了广泛的应用,由于其微小和精细的特征,传统检测方法不能满足要求。白光干涉法具有非接触、无损伤、高精度等特点,被广泛应用在微纳检测领域,另外光谱测量具有高效率、测量速度快的优点。因此,本文提出了白光干涉光谱测量方法并搭建了测量系统。和传统白光扫描干涉方法相比,其特点是具有较强的环境噪声抵御能力,并且测量速度较快。白光干涉膜厚测量技术可以对薄膜的厚度和形貌进行联合测量和分析。
基于表面等离子体共振传感的测量方案,利用共振曲线的三个特征参量—共振角、半高宽和反射率小值,通过反演计算得到待测金属薄膜的厚度。该测量方案可同时得到金属薄膜的介电常数和厚度,操作方法简单。我们利用Kretschmann型结构的表面等离子体共振实验系统,测得金膜在入射光波长分别为632.8nm和652.1nm时的共振曲线,由此得到金膜的厚度为55.2nm。由于该方案是一种强度测量方案,测量精度受环境影响较大,且测量结果存在多值性的问题,所以我们进一步对偏振外差干涉的改进方案进行了理论分析,根据P光和S光之间相位差的变化实现厚度测量。白光干涉膜厚测量技术可以实现对薄膜的大范围测量和分析。赣州膜厚仪制造厂家
白光干涉膜厚测量技术可以应用于半导体制造中的薄膜厚度控制。咸宁膜厚仪产品使用误区
白光干涉时域解调方案需要借助机械扫描部件带动干涉仪的反射镜移动,补偿光程差,实现对信号的解调[44-45]。系统基本结构如图2-1所示。光纤白光干涉仪的两输出臂分别作为参考臂和测量臂,作用是将待测的物理量转换为干涉仪两臂的光程差变化。测量臂因待测物理量而增加了一个未知的光程,参考臂则通过移动反射镜来实现对测量臂引入的光程差的补偿。当干涉仪两臂光程差ΔL=0时,即两干涉光束为等光程的时候,出现干涉极大值,可以观察到中心零级干涉条纹,而这一现象与外界的干扰因素无关,因而可据此得到待测物理量的值。干扰输出信号强度的因素包括:入射光功率、光纤的传输损耗、各端面的反射等。外界环境的扰动会影响输出信号的强度,但是对零级干涉条纹的位置不会产生影响。咸宁膜厚仪产品使用误区
上一篇: 景德镇膜厚仪按需定制
下一篇: 四平位移传感器行情