静海区原装膜厚仪

时间:2023年12月19日 来源:

与激光光源相比以白光的宽光谱光源由于具有短相干长度的特点使得两光束只有在光程差极小的情况下才能发生干涉因此不会产生干扰条纹。同时由于白光干涉产生的干涉条纹具有明显的零光程差位置避免了干涉级次不确定的问题。本文以白光干涉原理为理论基础对单层透明薄膜厚度测量尤其对厚度小于光源相干长度的薄膜厚度测量进行了研究。首先从白光干涉测量薄膜厚度的原理出发、分别详细阐述了白光干涉原理和薄膜测厚原理。接着在金相显微镜的基础上构建了型垂直白光扫描系统作为实验中测试薄膜厚度的仪器并利用白光干涉原理对的位移量进行了标定。白光干涉膜厚测量技术可以在不同环境下进行测量。静海区原装膜厚仪

由于不同性质和形态的薄膜对系统的测量量程和精度的需求不尽相同,因而多种测量方法各有优缺,难以一概而论。将上述各测量特点总结如表1-1所示,按照薄膜厚度的增加,适用的测量方式分别为椭圆偏振法、分光光度法、共聚焦法和干涉法。对于小于1μm的较薄薄膜,白光干涉轮廓仪的测量精度较低,分光光度法和椭圆偏振法较适合。而对于小于200nm的薄膜,由于透过率曲线缺少峰谷值,椭圆偏振法结果更加可靠。基于白光干涉原理的光学薄膜厚度测量方案目前主要集中于测量透明或者半透明薄膜,通过使用不同的解调技术处理白光干涉的图样,得到待测薄膜厚度。本章在详细研究白光干涉测量技术的常用解调方案、解调原理及其局限性的基础上,分析得到了常用的基于两个相邻干涉峰的白光干涉解调方案不适用于极短光程差测量的结论。在此基础上,我们提出了基于干涉光谱单峰值波长移动的白光干涉测量解调技术。十堰膜厚仪制作厂家白光干涉膜厚测量技术可以实现对复杂薄膜结构的测量。

利用包络线法计算薄膜的光学常数和厚度,但目前看来包络法还存在很多不足,包络线法需要产生干涉波动,要求在测量波段内存在多个干涉极值点,且干涉极值点足够多,精度才高。理想的包络线是根据联合透射曲线的切点建立的,在没有正确方法建立包络线时,通常使用抛物线插值法建立,这样造成的误差较大。包络法对测量对象要求高,如果薄膜较薄或厚度不足情况下,会造成干涉条纹减少,干涉波峰个数较少,要利用干涉极值点建立包络线就越困难,且利用抛物线插值法拟合也很困难,从而降低该方法的准确度。其次,薄膜吸收的强弱也会影响该方法的准确度,对于吸收较强的薄膜,随干涉条纹减少,极大值与极小值包络线逐渐汇聚成一条曲线,该方法就不再适用。因此,包络法适用于膜层较厚且弱吸收的样品。

白光扫描干涉法能免除色光相移干涉术测量的局限性。白光扫描干涉法采用白光作为光源,白光作为一种宽光谱的光源,相干长度较短,因此发生干涉的位置只能在很小的空间范围内。而且在白光干涉时,有一个确切的零点位置。测量光和参考光的光程相等时,所有波段的光都会发生相长干涉,这时就能观测到有一个很明亮的零级条纹,同时干涉信号也出现最大值,通过分析这个干涉信号,就能得到表面上对应数据点的相对高度,从而得到被测物体的几何形貌。白光扫描干涉术是通过测量干涉条纹来完成的,而干涉条纹的清晰度直接影响测试精度。因此,为了提高精度,就需要更为复杂的光学系统,这使得条纹的测量变成一项费力又费时的工作。白光干涉膜厚测量技术是一种测量薄膜厚度的方法。

论文所研究的锗膜厚度约300nm,导致其白光干涉输出光谱只有一个干涉峰,此时常规基于相邻干涉峰间距解调的方案(如峰峰值法等)将不再适用。为此,我们提出了一种基于单峰值波长移动的白光干涉测量方案,并设计搭建了膜厚测量系统。温度测量实验结果表明,峰值波长与温度变化之间具有良好的线性关系。利用该测量方案,我们测得实验用锗膜的厚度为338.8nm,实验误差主要来自于温度控制误差和光源波长漂移。论文通过对纳米级薄膜厚度的测量方案研究,实现了对锗膜和金膜的厚度测量。论文主要的创新点是提出了白光干涉单峰值波长移动的解调方案,并将其应用于极短光程差的测量。白光干涉膜厚测量技术可以通过对干涉曲线的分析实现对薄膜的厚度和形貌的联合测量和分析。非接触式膜厚仪定做价格

白光干涉膜厚测量技术可以应用于纳米制造中的薄膜厚度测量。静海区原装膜厚仪

干涉法与分光光度法都是利用相干光形成等厚干涉条纹的原理来确定薄膜厚度和折射率,然而与薄膜自发产生的等倾干涉不同,干涉法是通过设置参考光路,形成与测量光路间的干涉条纹,因此其相位信息包含两个部分,分别是由参考平面和测量平面间扫描高度引起的附加相位和由透明薄膜内部多次反射引起的膜厚相位。干涉法测量光路使用面阵CCD接收参考平面和测量平面间相干波面的干涉光强分布,不同于以上三种点测量方式,可一次性生成薄膜待测区域的表面形貌信息,但同时由于存在大量轴向扫描和数据解算,完成单次测量的时间相对较长。静海区原装膜厚仪

信息来源于互联网 本站不为信息真实性负责