吉安膜厚仪工厂
光谱拟合法易于测量具有应用领域,由于使用了迭代算法,因此该方法的优缺点在很大程度上取决于所选择的算法。随着各种全局优化算法的引入,遗传算法和模拟退火算法等新算法被用于薄膜参数的测量。其缺点是不够实用,该方法需要一个较好的薄膜的光学模型(包括色散系数、吸收系数、多层膜系统),但是在实际测试过程中,薄膜的色散和吸收的公式通常不准确,尤其是对于多层膜体系,建立光学模型非常困难,无法用公式准确地表示出来。在实际应用中只能使用简化模型,因此,通常全光谱拟合法不如极值法有效。另外该方法的计算速度慢也不能满足快速计算的要求。白光干涉膜厚测量技术可以通过对干涉图像的分析实现对薄膜的形貌变化的测量和分析。吉安膜厚仪工厂
光谱法是以光的干涉效应为基础的一种薄膜厚度测量方法,分为反射法和透射法两类[12]。入射光在薄膜-基底-薄膜界面上的反射和透射会引起多光束干涉效应,不同特性的薄膜材料的反射率和透过率曲线是不同的,并且在全光谱范围内与厚度之间是一一对应关系。因此,根据这一光谱特性可以得到薄膜的厚度以及光学参数。光谱法的优点是可以同时测量多个参数且可以有效的排除解的多值性,测量范围广,是一种无损测量技术;缺点是对样品薄膜表面条件的依赖性强,测量稳定性较差,因而测量精度不高;对于不同材料的薄膜需要使用不同波段的光源等。目前,这种方法主要应用于有机薄膜的厚度测量。安阳膜厚仪详情白光干涉膜厚测量技术可以实现对薄膜的在线检测和控制。
论文主要以半导体锗和贵金属金两种材料为对象,研究了白光干涉法、表面等离子体共振法和外差干涉法实现纳米级薄膜厚度准确测量的可行性。由于不同材料薄膜的特性不同,所适用的测量方法也不同。半导体锗膜具有折射率高,在通信波段(1550nm附近)不透明的特点,选择采用白光干涉的测量方法;而厚度更薄的金膜的折射率为复数,且能激发的表面等离子体效应,因而可借助基于表面等离子体共振的测量方法;为了进一步改善测量的精度,论文还研究了外差干涉测量法,通过引入高精度的相位解调手段,检测P光与S光之间的相位差提升厚度测量的精度。
自上世纪60年代起,利用X及β射线、近红外光源开发的在线薄膜测厚系统广泛应用于西方先进国家的工业生产线中。20世纪70年代后,为满足日益增长的质检需求,电涡流、电磁电容、超声波、晶体振荡等多种膜厚测量技术相继问世。90年代中期,随着离子辅助、离子束溅射、磁控溅射、凝胶溶胶等新型薄膜制备技术取得巨大突破,以椭圆偏振法和光度法为展示的光学检测技术以高精度、低成本、轻便环保、高速稳固为研发方向不断迭代更新,迅速占领日用电器及工业生产市场,并发展出依据用户需求个性化定制产品的能力。其中,对于市场份额占比较大的微米级薄膜,除要求测量系统不仅具有百纳米级的测量准确度及分辨力以外,还要求测量系统在存在不规则环境干扰的工业现场下,具备较高的稳定性和抗干扰能力。 白光干涉膜厚测量技术可以对薄膜的厚度和形貌进行联合测量和分析。
在白光反射光谱探测模块中,入射光经过分光镜1分光后,一部分光通过物镜聚焦到靶丸表面,靶丸壳层上、下表面的反射光经过物镜、分光镜1、聚焦透镜、分光镜2后,一部分光聚焦到光纤端面并到达光谱仪探测器,可实现靶丸壳层白光干涉光谱的测量,一部分光到达CCD探测器,可获得靶丸表面的光学图像。靶丸吸附转位模块和三维运动模块分别用于靶丸的吸附定位以及靶丸特定角度转位以及靶丸位置的辅助调整,测量过程中,将靶丸放置于轴系吸嘴前端,通过微型真空泵负压吸附于吸嘴上;然后,移动位移平台,将靶丸移动至CCD视场中心,通过Z向位移台,使靶丸表面成像清晰;利用光谱仪探测靶丸壳层的白光反射光谱;靶丸在轴系的带动下,平稳转位到特定角度,由于轴系的回转误差,转位后靶丸可能偏移CCD视场中心,此时可通过调整轴系前端的调心结构,使靶丸定点位于视场中心并采集其白光反射光谱;重复以上步骤,可实现靶丸特定位置或圆周轮廓白光反射光谱数据的测量。为减少外界干扰和震动而引起的测量误差,该装置放置于气浮平台上,通过高性能的隔振效果可保证测量结果的稳定性。 白光干涉膜厚测量技术可以实现对薄膜的快速测量和分析。湖南膜厚仪经销批发
白光干涉膜厚测量技术可以通过对干涉图像的分析实现对不同材料的薄膜的联合测量和分析。吉安膜厚仪工厂
微纳制造技术的发展推动着检测技术向微纳领域进军,微结构和薄膜结构作为微纳器件中的重要组成部分,在半导体、医学、航天航空、现代制造等领域得到了广泛的应用,由于其微小和精细的特征,传统检测方法不能满足要求。白光干涉法具有非接触、无损伤、高精度等特点,被广泛应用在微纳检测领域,另外光谱测量具有高效率、测量速度快的优点。因此,本文提出了白光干涉光谱测量方法并搭建了测量系统。和传统白光扫描干涉方法相比,其特点是具有较强的环境噪声抵御能力,并且测量速度较快。吉安膜厚仪工厂
上一篇: 福建小型光谱共焦
下一篇: 齐齐哈尔位移传感器成本价