测量膜厚仪传感器品牌

时间:2024年01月30日 来源:

由于不同性质和形态的薄膜对测量量程和精度的需求不相同,因此多种测量方法各有优缺点,难以笼统评估。测量特点总结如表1-1所示,针对薄膜厚度不同,适用的测量方法分别为椭圆偏振法、分光光度法、共聚焦法和干涉法。对于小于1μm的薄膜,白光干涉轮廓仪的测量精度较低,分光光度法和椭圆偏振法较为适用;而对于小于200nm的薄膜,椭圆偏振法结果更可靠,因为透过率曲线缺少峰谷值。光学薄膜厚度测量方案目前主要集中于测量透明或半透明薄膜。通过使用不同的解调技术处理白光干涉的图样,可以得到待测薄膜厚度。本章详细研究了白光干涉测量技术的常用解调方案、解调原理及其局限性,并得出了基于两个相邻干涉峰的白光干涉解调方案不适用于极短光程差测量的结论。在此基础上,提出了一种基于干涉光谱单峰值波长移动的白光干涉测量解调技术。工作原理是基于膜层与底材反射率及相位差,通过测量反射光的干涉来计算膜层厚度。测量膜厚仪传感器品牌

在纳米级薄膜的各项相关参数中,薄膜材料的厚度是薄膜设计和制备过程中重要的参量之一,具有决定薄膜性质和性能的基本作用。然而,由于其极小尺寸及突出的表面效应,使得对纳米级薄膜的厚度准确测量变得困难。经过众多科研技术人员的探索和研究,新的薄膜厚度测量理论和测量技术不断涌现,测量方法从手动到自动、有损到无损不断得到实现。对于不同性质薄膜,其适用的厚度测量方案也不相同。针对纳米级薄膜,应用光学原理的测量技术。相比其他方法,光学测量方法具有精度高、速度快、无损测量等优势,成为主要检测手段。其中代表性的测量方法有椭圆偏振法、干涉法、光谱法、棱镜耦合法等。薄膜膜厚仪精度操作需要一定的专业技能和经验,需要进行充分的培训和实践。

干涉测量法是一种基于光的干涉原理实现对薄膜厚度测量的光学方法,是一种高精度的测量技术,其采用光学干涉原理的测量系统具有结构简单、成本低廉、稳定性高、抗干扰能力强、使用范围广等优点。对于大多数干涉测量任务,都是通过分析薄膜表面和基底表面之间产生的干涉条纹的形状和分布规律,来研究待测物理量引入的光程差或位相差的变化,从而实现测量目的。光学干涉测量方法的测量精度可达到甚至优于纳米量级,利用外差干涉进行测量,其精度甚至可以达到10^-3 nm量级。根据所使用的光源不同,干涉测量方法可分为激光干涉测量和白光干涉测量两大类。激光干涉测量的分辨率更高,但不能实现对静态信号的测量,只能测量输出信号的变化量或连续信号的变化,即只能实现相对测量。而白光干涉是通过对干涉信号中心条纹的有效识别来实现对物理量的测量,是一种测量方式,在薄膜厚度测量中得到了广泛的应用。

白光干涉测量技术,也称为光学低相干干涉测量技术,使用的是低相干的宽谱光源,如超辐射发光二极管、发光二极管等。与所有光学干涉原理一样,白光干涉也是通过观察干涉图案变化来分析干涉光程差变化,并通过各种解调方案实现对待测物理量的测量。采用宽谱光源的优点是,由于白光光源的相干长度很小(一般为几微米到几十微米之间),所有波长的零级干涉条纹重合于主极大值,即中心条纹,与零光程差的位置对应。因此,中心零级干涉条纹的存在为测量提供了一个可靠的位置参考,只需一个干涉仪即可进行待测物理量的测量,克服了传统干涉仪不能进行测量的缺点。同时,相对于其他测量技术,白光干涉测量方法还具有环境不敏感、抗干扰能力强、动态范围大、结构简单和成本低廉等优点。经过几十年的研究与发展,白光干涉技术在膜厚、压力、温度、应变、位移等领域已得到广泛应用。广泛应用于电子、半导体、光学、化学等领域,为研究和开发提供了有力的手段。

自1986年E.Wolf证明了相关诱导光谱的变化以来,人们开始在理论和实验上进行探讨和研究。结果表明,动态的光谱位移可以产生新的滤波器,可应用于光学信号处理和加密领域。本文提出的基于白光干涉光谱单峰值波长移动的解调方案,可应用于当两光程差非常小导致干涉光谱只有一个干涉峰的信号解调,实现纳米薄膜厚度测量。在频域干涉中,当干涉光程差超过光源相干长度时,仍然可以观察到干涉条纹。这种现象是因为白光光源的光谱可以看成是许多单色光的叠加,每一列单色光的相干长度都是无限的。当使用光谱仪接收干涉光谱时,由于光谱仪光栅的分光作用,宽光谱的白光变成了窄带光谱,导致相干长度发生变化。白光干涉膜厚仪是一种用来测量透明和平行表面薄膜厚度的仪器。微米级膜厚仪供应

操作需要一定的专业基础和经验,需要进行充分的培训和实践。测量膜厚仪传感器品牌

在激光惯性约束核聚变实验中,靶丸的物性参数和几何参数对靶丸制备工艺改进和仿真模拟核聚变实验过程至关重要。然而,如何对靶丸多个参数进行同步、高精度、无损的综合检测是激光惯性约束核聚变实验中的关键问题。虽然已有多种薄膜厚度及折射率的测量方法,但仍然无法满足激光核聚变技术对靶丸参数测量的高要求。此外,靶丸的参数测量存在以下问题:不能对靶丸进行破坏性切割测量,否则被破坏的靶丸无法用于后续工艺处理或打靶实验;需要同时测得靶丸的多个参数,因为不同参数的单独测量无法提供靶丸制备和核聚变反应过程中发生的结构变化的现象和规律,并且效率低下、没有统一的测量标准。由于靶丸属于自支撑球形薄膜结构,曲面应力大、难以展平,因此靶丸与基底不能完全贴合,可在微观区域内视作类薄膜结构。测量膜厚仪传感器品牌

信息来源于互联网 本站不为信息真实性负责