原装膜厚仪设备生产

时间:2024年04月25日 来源:

在激光惯性约束核聚变实验中,靶丸的物性参数和几何参数对靶丸制备工艺改进和仿真模拟核聚变实验过程至关重要。然而,如何对靶丸多个参数进行同步、高精度、无损的综合检测是激光惯性约束核聚变实验中的关键问题。虽然已有多种薄膜厚度及折射率的测量方法,但仍然无法满足激光核聚变技术对靶丸参数测量的高要求。此外,靶丸的参数测量存在以下问题:不能对靶丸进行破坏性切割测量,否则被破坏的靶丸无法用于后续工艺处理或打靶实验;需要同时测得靶丸的多个参数,因为不同参数的单独测量无法提供靶丸制备和核聚变反应过程中发生的结构变化的现象和规律,并且效率低下、没有统一的测量标准。由于靶丸属于自支撑球形薄膜结构,曲面应力大、难以展平,因此靶丸与基底不能完全贴合,可在微观区域内视作类薄膜结构。高精度的白光干涉膜厚仪通常采用Michelson干涉仪的结构。原装膜厚仪设备生产

在对目前常用的白光干涉测量方案进行比较研究后发现,当两个干涉光束的光程差非常小导致干涉光谱只有一个峰时,基于相邻干涉峰间距的解调方案不再适用。因此,我们提出了一种基于干涉光谱单峰值波长移动的测量方案,适用于极小光程差。这种方案利用干涉光谱的峰值波长会随光程差变化而周期性地出现红移和蓝移,当光程差在较小范围内变化时,峰值波长的移动与光程差成正比。我们在光纤白光干涉温度传感系统上验证了这一测量方案,并成功测量出光纤端面半导体锗薄膜的厚度。实验表明,锗膜厚度为一定值,与台阶仪测量结果存在差异是由于薄膜表面本身并不光滑,台阶仪的测量结果能作为参考值。误差主要来自光源的波长漂移和温度误差。测量膜厚仪经销批发操作之前需要专 业技能和经验的培训和实践。

白光干涉的分析方法利用白光干涉感知空间位置的变化 ,从而得到被测物体的信息 。它是在单色光相移干涉术的基础上发展而来的。单色光相移干涉术利用光路使参考光和被测表面的反射光发生干涉,再使用相移的方法调制相位,利用干涉场中光强的变化计算出其每个数据点的初始相位,但是这样得到的相位是位于(-π,+π]间,所以得到的是不连续的相位。因此,需要进行相位展开使其变为连续相位。再利用高度与相位的信息求出被测物体的表面形貌。单色光相移法具有测量速度快、测量分辨力高、对背景光强不敏感等优点。但是,由于单色光干涉无法确定干涉条纹的零级位置。因此,在相位解包裹中无法得到相位差的周期数,所以只能假定相位差不超过一个周期,相当于测试表面的相邻高度不能超过四分之一波长[27]。这就限制了其测量的范围,使它只能测试连续结构或者光滑表面结构。

光谱拟合法易于测量具有应用领域,由于使用了迭代算法,因此该方法的优缺点在很大程度上取决于所选择的算法。随着各种全局优化算法的引入,遗传算法和模拟退火算法等新算法被用于薄膜参数的测量。其缺点是不够实用,该方法需要一个较好的薄膜的光学模型(包括色散系数、吸收系数、多层膜系统),但是在实际测试过程中,薄膜的色散和吸收的公式会有出入,尤其是对于多层膜体系,建立光学模型非常困难,无法用公式准确地表示出来。在实际应用中只能使用简化模型,因此,通常全光谱拟合法不如极值法有效。另外该方法的计算速度慢也不能满足快速计算的要求。白光干涉膜厚仪需要进行校准,并选择合适的标准样品。

在白光干涉中,当光程差为零时,会出现零级干涉条纹。随着光程差的增加,光源谱宽范围内的每条谱线形成的干涉条纹之间会发生偏移,叠加后整体效果导致条纹对比度降低。白光干涉原理的测量系统精度高,可以进行测量。采用白光干涉原理的测量系统具有抗干扰能力强、动态范围大、快速检测和结构简单紧凑等优点。虽然普通的激光干涉与白光干涉有所区别,但它们也具有许多共同之处。我们可以将白光看作一系列理想的单色光在时域上的相干叠加,而在频域上观察到的就是不同波长对应的干涉光强变化曲线。白光干涉膜厚测量技术可以实现对薄膜的快速测量和分析。什么是膜厚仪

白光干涉膜厚测量技术可以实现对薄膜的快速测量和分析 。原装膜厚仪设备生产

由于不同性质和形态的薄膜对系统的测量量程和精度的需求不相同,因而多种测量方法各有优缺,难以一概而论。将各测量特点总结所示,按照薄膜厚度的增加,适用的测量方式分别为椭圆偏振法、分光光度法、共聚焦法和干涉法。对于小于1μm的较薄薄膜,白光干涉轮廓仪的测量精度较低,分光光度法和椭圆偏振法较适合。而对于小于200nm的薄膜,由于透过率曲线缺少峰谷值,椭圆偏振法结果更加可靠。基于白光干涉原理的光学薄膜厚度测量方案目前主要集中于测量透明或者半透明薄膜,通过使用不同的解调技术处理白光干涉的图样,得到待测薄膜厚度。本章在详细研究白光干涉测量技术的常用解调方案、解调原理及其局限性的基础上,分析得到了常用的基于两个相邻干涉峰的白光干涉解调方案不适用于极短光程差测量的结论。在此基础上,我们提出了基于干涉光谱单峰值波长移动的白光干涉测量解调技术。原装膜厚仪设备生产

信息来源于互联网 本站不为信息真实性负责