原装膜厚仪成本价

时间:2024年05月14日 来源:

光纤白光干涉测量使用的是宽谱光源 。光源的输出光功率和中心波长的稳定性是光源选取时需要重点考虑的参数。论文所设计的解调系统是通过检测干涉峰值的中心波长的移动实现的,所以光源中心波长的稳定性将对实验结果产生很大的影响。实验中我们所选用的光源是由INPHENIX公司生产的SLED光源,相对于一般的宽带光源具有输出功率高、覆盖光谱范围宽等特点。该光源采用+5V的直流供电,标定中心波长为1550nm,且其输出功率在一定范围内是可调的,驱动电流可以达到600mA。可以配合不同的软件进行分析和数据处理,例如建立数据库、统计数据等 。原装膜厚仪成本价

原装膜厚仪成本价,膜厚仪

光学测厚方法结合了光学、机械、电子和计算机图像处理技术,以光波长为测量基准,从原理上保证了纳米级的测量精度。由于光学测厚是非接触式的测量方法,因此被用于精密元件表面形貌及厚度的无损测量。针对薄膜厚度的光学测量方法,可以按照光吸收、透反射、偏振和干涉等不同光学原理分为分光光度法、椭圆偏振法、干涉法等多种测量方法。不同的测量方法各有优缺点和适用范围。因此,有一些研究采用了多通道式复合测量法,结合多种测量方法,例如椭圆偏振法和光度法结合的光谱椭偏法,彩色共焦光谱干涉和白光显微干涉的结合法等。高精度膜厚仪厂家现货总之,白光干涉膜厚仪是一种应用很广的测量薄膜厚度的仪器。

原装膜厚仪成本价,膜厚仪

干涉法作为面扫描方式可以一次性对薄膜局域内的厚度进行解算 ,适用于对面型整体形貌特征要求较高的测量对象。干涉法算法在于相位信息的提取,借助多种复合算法通常可以达到纳米级的测量准确度。然而主动干涉法对条纹稳定性不佳,光学元件表面的不清洁、光照度不均匀、光源不稳定、外界气流震动干扰等因素均可能影响干涉图的完整性[39],使干涉图样中包含噪声和部分区域的阴影,给后期处理带来困难。除此之外,干涉法系统精度的来源——精密移动及定位部件也增加了系统的成本,高精度的干涉仪往往较为昂贵。

 基于白光干涉光谱单峰值波长移动的锗膜厚度测量方案研究:在对比研究目前常用的白光干涉测量方案的基础上,我们发现当两干涉光束的光程差非常小导致其干涉光谱只有一个干涉峰时,常用的基于两相邻干涉峰间距的解调方案不再适用。为此,我们提出了适用于极小光程差并基于干涉光谱单峰值波长移动的测量方案。干涉光谱的峰值波长会随着光程差的增大出现周期性的红移和蓝移,当光程差在较小范围内变化时,峰值波长的移动与光程差成正比。根据这一原理,搭建了光纤白光干涉温度传感系统对这一测量解调方案进行验证,得到了光纤端面半导体锗薄膜的厚度。实验结果显示锗膜的厚度为,与台阶仪测量结果存在,这是因为薄膜表面本身并不光滑,台阶仪的测量结果只能作为参考值。锗膜厚度测量误差主要来自光源的波长漂移和温度控制误差。操作需要一定的专业素养和经验,需要进行充分的培训和实践。

原装膜厚仪成本价,膜厚仪

白光扫描干涉法利用白光作为光源,通过压电陶瓷驱动参考镜进行扫描,将干涉条纹扫过被测面,并通过感知相干峰位置来获取表面形貌信息。测量原理如图1-5所示。然而,在对薄膜进行测量时,其上下表面的反射会导致提取出的白光干涉信号呈现双峰形式,变得更为复杂。此外,由于白光扫描干涉法需要进行扫描过程,因此测量时间较长,且易受外界干扰。基于图像分割技术的薄膜结构测试方法能够自动分离双峰干涉信号,从而实现对薄膜厚度的测量。白光干涉膜厚测量技术可以实现对薄膜的快速测量和分析 。纳米级膜厚仪一般测什么

当光路长度增加,仪器的分辨率越高,也越容易受到静态振动等干扰因素的影响,需采取一些减小噪声的措施。原装膜厚仪成本价

干涉测量法[9-10]是基于光的干涉原理实现对薄膜厚度测量的光学方法 ,是一种高精度的测量技术。采用光学干涉原理的测量系统一般具有结构简单,成本低廉,稳定性好,抗干扰能力强,使用范围广等优点。对于大多数的干涉测量任务,都是通过薄膜表面和基底表面之间产生的干涉条纹的形状和分布规律,来研究干涉装置中待测物理量引入的光程差或者是位相差的变化,从而达到测量目的。光学干涉测量方法的测量精度可达到甚至优于纳米量级,而利用外差干涉进行测量,其精度甚至可以达到10-3nm量级[11]。根据所使用光源的不同,干涉测量方法又可以分为激光干涉测量和白光干涉测量两大类。激光干涉测量的分辨率更高,但是不能实现对静态信号的测量,只能测量输出信号的变化量或者是连续信号的变化,即只能实现相对测量。而白光干涉是通过对干涉信号中心条纹的有效识别来实现对物理量的测量,是一种测量方式,在薄膜厚度的测量中得到了广泛的应用。原装膜厚仪成本价

信息来源于互联网 本站不为信息真实性负责