本地膜厚仪成本价
微纳制造技术的发展推动着检测技术向微纳领域进军 ,微结构和薄膜结构作为微纳器件中的重要组成部分,在半导体、航天航空、医学、现代制造等领域得到了广泛的应用,由于其微小和精细的特征,传统检测方法不能满足要求。白光干涉法具有非接触、无损伤、高精度等特点,被广泛应用在微纳检测领域,另外光谱测量具有高效率、测量速度快的优点。因此,本文提出了白光干涉光谱测量方法并搭建了测量系统。和传统白光扫描干涉方法相比,其特点是具有较强的环境噪声抵御能力,并且测量速度较快。可以配合不同的软件进行分析和数据处理,例如建立数据库、统计数据等 。本地膜厚仪成本价
论文主要以半导体锗和贵金属金两种材料为对象 ,研究了白光干涉法、表面等离子体共振法和外差干涉法实现纳米级薄膜厚度准确测量的可行性。由于不同材料薄膜的特性不同,所适用的测量方法也不同。半导体锗膜具有折射率高,在通信波段(1550nm附近)不透明的特点,选择采用白光干涉的测量方法;而厚度更薄的金膜的折射率为复数,且能激发的表面等离子体效应,因而可借助基于表面等离子体共振的测量方法;为了进一步改善测量的精度,论文还研究了外差干涉测量法,通过引入高精度的相位解调手段,检测P光与S光之间的相位差提升厚度测量的精度。薄膜膜厚仪生产厂家哪家好广泛应用于电子、半导体、光学、化学等领域,为研究和开发提供了有力的手段。
薄膜是指分子 、原子或者是离子在基底表面沉积形成的一种特殊的二维材料。近几十年来,随着材料科学和镀膜工艺的不断发展,厚度在纳米量级(几纳米到几百纳米范围内)薄膜的研究和应用迅速增加。与体材料相比,因为纳米薄膜的尺寸很小,使得表面积与体积的比值增加,表面效应所表现出的性质非常突出,因而在光学性质和电学性质上有许多独特的表现。纳米薄膜应用于传统光学领域,在生产实践中也得到了越来越广泛的应用,尤其是在光通讯、光学测量,传感,微电子器件,生物与医学工程等领域的应用空间更为广阔。
白光光谱法克服了干涉级次的模糊识别问题 ,具有动态测量范围大,连续测量时波动范围小的特点,但在实际测量中,由于测量误差、仪器误差、拟合误差等因素,干涉级次的测量精度仍其受影响,会出现干扰级次的误判和干扰级次的跳变现象。导致公式计算得到的干扰级次m值与实际谱峰干涉级次m'(整数)之间有误差。为得到准确的干涉级次,本文依据干涉级次的连续特性设计了以下校正流程图,获得了靶丸壳层光学厚度的精确值。导入白光干涉光谱测量曲线。白光干涉膜厚测量技术可以应用于光学元件制造中的薄膜厚度控制。
为了分析白光反射光谱的测量范围 ,开展了不同壁厚的靶丸壳层白光反射光谱测量实验。图是不同壳层厚度靶丸的白光反射光谱测量曲线,如图所示,对于壳层厚度30μm的靶丸,其白光反射光谱各谱峰非常密集、干涉级次数值大;此外,由于靶丸壳层的吸收,壁厚较大的靶丸信号强度相对较弱。随着靶丸壳层厚度的进一步增加,其白光反射光谱各谱峰将更加密集,难以实现对各干涉谱峰波长的测量。为实现较大厚度靶丸壳层厚度的白光反射光谱测量,需采用红外的宽谱光源和光谱探测器。对于壳层厚度为μm的靶丸,测量的波峰相对较少,容易实现靶丸壳层白光反射光谱谱峰波长的准确测量;随着靶丸壳层厚度的进一步减小,两干涉信号之间的光程差差异非常小,以至于他们的光谱信号中只有一个干涉波峰,基于峰值探测的白光反射光谱方法难以实现其厚度的测量;为实现较小厚度靶丸壳层厚度的白光反射光谱测量,可采用紫外的宽谱光源和光谱探测器提升其探测厚度下限。白光干涉膜厚测量技术可以实现对不同材料的薄膜进行测量;防水膜厚仪定做
随着技术的进步和应用领域的拓展,白光干涉膜厚仪的性能和功能将不断提高和扩展。本地膜厚仪成本价
白光干涉在零光程差处 ,出现零级干涉条纹,随着光程差的增加,光源谱宽范围内的每条谱线各自形成的干涉条纹之间互有偏移,叠加的整体效果使条纹对比度下降。测量精度高,可以实现测量,采用白光干涉原理的测量系统的抗干扰能力强,动态范围大,具有快速检测和结构紧凑等优点。普通的激光干涉与白光干涉之间虽然有差别,但也有很多的共同之处。可以说,白光干涉实际上就是将白光看作一系列理想的单色光在时域上的相干叠加,在频域上观察到的就是不同波长对应的干涉光强变化曲线。本地膜厚仪成本价
上一篇: 高速位移传感器生产厂家哪家好
下一篇: 工厂光谱共焦按需定制