河北碳化硅衬底sic

时间:2021年01月17日 来源:

SiC材料具有良好的电学特性和力学特性,是一种非常理想的可适应诸多恶劣环境的半导体材料。它禁带宽度较大,具有热传导率高、耐高温、抗腐蚀、化学稳定性高等特点,以其作为器件结构材料,可以得到耐高温、耐高压和抗腐蚀的SiC-MEMS器件,具有广阔的市场和应用前景。同时SiC陶瓷具有高温强度大、抗氧化性强、耐磨损性好、热稳定性佳、热膨胀系数小、热导率大、硬度高以及抗热震和耐化学腐蚀等优良特性。因此,是当前**有前途的结构陶瓷之一,并且已在许多高技术领域(如空间技术、核物理等)及基础产业(如石油化工、机械、车辆、造船等)得到应用,用作精密轴承、密封件、气轮机转子、喷嘴、热交换器部件及原子核反应堆材料等。如利用多层多晶碳化硅表面微机械工艺制作的微型电动机,可以在490℃以上的高温环境下稳定工作。但是SiC体单晶须在高温下生长,掺杂难于控制,晶体中存在缺点,特别是微管道缺点无法消除,而且SiC体单晶非常昂贵,因此发展低温制备SiC薄膜技术对于SiC器件的实际应用有重大意义。碳化硅作为新兴的战略先导产业,它是发展第3代半导体产业的关键基础材料。河北碳化硅衬底sic

碳化硅sic的光学性质  材料带隙即禁带的大小决定了器件的很多性质,包括光谱响应特性、抗辐射特性、工作温度以及击穿电压等许多器件的重要特性。SiC的禁带宽,如4H-SiC是3.2eV,6H-SiC是2.8eV,所以SiC具有良好的紫外光谱响应特性,对红外辐射不响应,抗辐射特性好,可应用于检测红热背景下的微弱紫外信号。而且其暗电流很低,工作温度高,故也可用于探测高温环境中的紫外信号。  SiC在很宽的光谱范围(2.2~3.2eV)内也有良好的发光特性。不过,SiC的光学特性与晶体取向及同质多型体的结构有很密切的关系。苏州进口4寸碳化硅衬底SiC的热稳定性比较高。在常压下不会熔化。

在4H-SiC材料和器件发展方面,美国处于国际**地位,已经从探索性研究阶段向大规模研究和应用阶段过渡。CREE公司已经生产出4英寸(100 mm)零微管(ZMP)n型SiC衬底。同时,螺旋位错(screw dislocation)密度被降低到几十个/cm2。商用水平比较高的器件:4H-SiC MESFET在S-波段连续波工作60W(1.5GHz,ldB压缩),漏效率45%(1.5GHz,POUT=PldB),工作频率至2.7GHz。近期CREE公司生产的CRF35010性能达到:工作电压48V,输出功率10W,工作频率3.4-3.8GHz,线性增益10dB;美国正在逐步将这种器件装备在***武器上,如固态相控阵雷达系统、***通讯电子系统、高频电源系统、电子战系统——干扰和威胁信号预警等。其中Cree公司的SiC MESFET功率管已经正式装备美国海军的新一代预警机E2D样机。近期俄罗斯、欧洲和日本加快发展,SiC材料生长和器件制造技术也在不断走向成熟。

SiC是**早发现的半导体材料之一。早在1824年,瑞典科学家Berzelius在试图合成金刚石时偶然发现了SiC,***揭示了C-Si键存在的可能性。直到1885年,Acheson才***次使用焦炭与硅石混合在电熔炉中高温加热获得SiC单晶。但得到的SiC杂质浓度较高,结晶完整性较差,同时SiC的结晶形态繁多,根本无法用于制造电子器件。1955年,荷兰飞利浦研究室的Lely***在实验室中用升华气体再结晶的方法制成杂质数量和种类可控制的、具有足够尺寸的SiC单晶,

由此奠定了碳化硅的发展基础。在此基础上,前苏联科学家Tariov和Tsvetkov等人于1 978年提出利用籽晶升华法(seeded sublimation method)生长SiC单晶,即所谓“改进的Lely法”(modified Lely method)或物***相传输法(physical vapor transport,PVT),从根本上克服了液相生长SiC比较困难这一障碍。1987年,专门从事SiC半导体研究工作的Cree公司成立,并于1994年制备出4H-SiC晶片。随后,SiC器件的制造工艺,如离子注入、氧化、刻蚀、金属.半导体接触等取得了重大进展,从而掀起了SiC材料、器件及相关技术研究的热潮,并取得了突飞猛进的发展。 SiC单晶生长经历了3个阶段,即Acheson法、Lely法、改良Lely法。

采用SiC的功率模块将进入诸如可再生能源、UPS电源、驱动器和汽车等应用。风电和牵引应用可能会随之而来。 到2021年,SiC功率器件市场总额预计将上升到10亿美元 。在某些市场,如太阳能,SiC器件已投入运行,尽管事实上这些模块的价格仍然比常规硅器件高。是什么使这种材料具有足够的吸引力,即使价格更高也心甘情愿地被接受?首先,作为宽禁带材料,SiC提供了功率半导体器件的新设计方法。传统功率硅技术中,IGBT开关被用于高于600V的电压,并且硅PIN-续流二极管是**技术的。硅功率器件的设计与软开关特性造成相当大的功率损耗。有了SiC的宽禁带,可设计阻断电压高达15kV的高压MOSFET,同时动态损耗非常小。有了SiC,传统的软关断硅二极管可由肖特基二极管取代,并带来非常低的开关损耗。作为一个额外的优势,SiC具有比硅高3倍的热传导率。连同低功率损耗,SiC是提高功率模块**率密度的一种理想材料。SiC作为第三代半导体材料的杰出**由于其特有的物理化学特性成为制作高频、大功率、高温器件的理想材料。山东碳化硅衬底4寸导电

碳化硅材料的重要用途还包括:微波器件衬底、石墨烯外延衬底、人工钻石。河北碳化硅衬底sic

SiC 电子器件是微电子器件领域的研究热点之一。SiC 材料的击穿电场有4MV/cm,很适合于制造高压功率器件的有源层。而由于 SiC 衬底存在缺点等原因,将它直接用于器件制造时,性能不好。SiC 衬底经过外延之后,其表面缺点减少,晶格排列整齐,表面形貌良好,比衬底大为改观,此时将其用于制造器件可以提高器件的性能。为了提高击穿电压,厚的外延层、好的表面形貌和较低的掺杂浓度是必需的。  一些高压双极性器件,需外延膜的厚度超过 50μm,掺杂浓度小于 2× 1015cm-3,载流子寿命大过 1us。对于高反压大功率器件,需要要在 4H-SiC 衬底上外延一层很厚的、低掺杂浓度的外延层。为了制作 10KW 的大功率器件,外延层厚度要达到 100μm以上。高压、大电流、高可靠性 SiC 电子器件的不断发展对 SiC 外延薄膜提出了更多苛刻的要求,需要通过进一步深入的研究提高厚外延生长技术。河北碳化硅衬底sic

信息来源于互联网 本站不为信息真实性负责